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SECTION – A

Answer ALL questions:





(5 x 20 = 100)

1. a) 
(i) Show that every element of X/Y contains exactly one element of Z 

where Y and Z are complementary subspaces of a vector space X.      

(OR)



(ii) Prove that every vector space has a Hamel Basis. (5)

b) (i) Prove that a subset S of a vector space X is linearly independent 
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(ii) If 
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prove that the null space 
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Conversely, if Z is a subspace of X of deficiency 0 or 1, show that there is an 
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(OR)




(iii) Let X be a real vector space, let Y be a subspace of X and p be a real valued function on X such that 
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is a linear functional on Y and 
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   prove that there is a linear function F on X such that 
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2. a)
Let X and Y be normal linear spaces and let T be a linear transformation 

of X into Y. Prove that T is bounded if and only if T is continuous.





(OR)

State and prove F-Rierz Lemma.     



         (5)

b) State and prove Hahn Banach Theorem for a complex normal linear space.





(OR)

State and prove the Uniform Boundedness Theorem. Give an example to 

show that the Uniform Boundedness Principle is not true for every normal 

vector space.






        (15)

3. a)
Prove that a real Banach space is a Hilbert space iff the parallelogram law 

holds in it.






         (5)







(OR)



Let X and Y be Banach spaces and let T be a linear transformation of X 

into Y. Prove that if the graph of T is closed, then T is bounded. 

b) State and prove Projection Theorem.

(OR)



State and prove Open Mapping Theorem.


        (15)

4. a)
If T is an operator on a Hilbert Space X, show that T is normal 
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(OR)

If T is an operator on a Hilbert space X, prove that (
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b) (i) If N1 and N2 are normal operators on a Hilbert space X with the 

property that either commute with adjoint of the other, prove that N1+N2 and N1N2 are normal.

(ii) If M and N are closed linear subspaces of a Hilbert space X and if P and Q are projections on M and N, then show that 
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(OR)



(iii) State and prove Rierz – Fischer Theorem.

5. a)
Prove that the spectrum of 
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(OR)



Show that 
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          (5)

b) State and prove the Spectral Theorem.

(OR)



Define spectral radius and derive a formula for the same.
          (15)
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